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Abstract 15 

 16 

The E. coli metabolome is an interconnected set of enzymes that has measurable kinetic parameters ascribed for 17 

the production of most of its metabolites. Flux Balance Analysis (FBA) or Ordinary Differential Equation 18 

(ODE) models are used to simulate and increase product yield using defined media. However, such simulations 19 

either give a range (min-max) of the metabolite yield for FBA model or tries to enumerate the exact production 20 

in the ODE models. The transcriptome expression diversity of the individual cells are not taken into account. 21 

We formulate the metabolic behaviour of individual cells by using a robust POpulation SYstem Biology 22 

ALgorithm (POSYBAL). This allowed for predicted multiple gene knockouts for increasing homologous 23 

metabolite like shikimate and heterologous metabolite like isobutanol. We demonstrate the performance one 24 

such triple knockout prediction viz. adhE, ackA and ldhA for isobutanol and aroK, aroA and aroL triple 25 

knockout for shikimate. The isobutanol yield increased by 40 times in the knockouts (>2000 ppm) compared to 26 

50ppm produced in the wild-type (BL21) strain, and the shikimate yield was increased to 42 times, i.e. from 58 27 

to ~2100ppm. This formulation was also based on the additional concept of “Nitrogen Swapping” where cells 28 

were grown in standard multi-component media during the growth phase and then swapped in low Nitrogen 29 

media in the production phase. This swap redistributed the flux distribution such that it flowed primarily 30 

through non-nitrogenous pathway such as to maximize the metabolites like shikimate and isobutanol that lack 31 

the element Nitrogen in its constituent. Further analysis of various feature of the prediction of the POSYBAL 32 

model indicates that even under normal glucose uptake the bacterial cell population diverges into rapidly 33 

growing and nearly non-growing cells thus increasing its diversity and hence robustness under any antibacterial 34 

attack. This feature is discussed from an evolutionary standpoint.  35 

  36 
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Introduction 40 

 41 

Naturally growing bacteria have evolved to survive in the “occasionally famine and rarely feast” conditions for 42 

biomass. In contrast, the nutritional factors are made optimal in laboratories to return higher biomass, 43 

subsequently increasing the product yield. Inherent in this optimizing process is often an opposite pull of flux of 44 

either maximizing the biomass which is a near precise stoichiometric summation of multiple essential 45 

metabolites or the specific maximization of any particular metabolite.  If these ‘nutritional conditions’ can be 46 

exploited, we can have a ‘minimalistic’ system to carry out reactions of commercially valuable metabolites with 47 

low-cost inputs. To this end, we need to construct an in-silico model and validate its formulation by precise 48 

experimental operations.  49 

 50 

One of the significant drivers for constructing in-silico models for different micro-organisms in the field of 51 

metabolic engineering is to forecast the genetic changes (gene deletions and over expressions) required in 52 

enhancing the levels of a specific metabolite of the interest. There are two types of platform that are commonly 53 

used to simulate a bacterial cell. It is either based on linear Flux Balanced analysis (FBA) platform [1-4] or 54 

dependent on ordinary differential equations (ODE) where kinetic parameters (Km and Vmax) of enzymes 55 

participating in the particular reaction type (single substrate, multi-substrate, ping pong, ternary complex etc.) 56 

are used [5-8]. The popular FBA platform generally incorporates the development of a stoichiometric model 57 

with genome-level annotations of pathways that maps conversion of xi moles of substrates to xj moles of 58 

product.  The simulations thereof are used to predict knockouts of non-essential genes, in specific pathways 59 

(identified during the simulation studies) which would help in blocking the formation of particular metabolites 60 

and allow the cells in redirecting the carbon feed into the production of the metabolite of interest.  61 

 62 

All types of in-silico model, whether based on the mathematical framework of FBA or ODE format tacitly 63 

assume that all the cells are in an identical metabolic state. However, bacterial population are generally 64 

asynchronous in their growth and their reaction to a stimulus (positive or negative) at the individual cellular 65 

level are not unique and can only be represented by a diverse array of responses. In a population of bacterial 66 

cells under a standard nutrient condition, some proliferate while some are stunted. Similarly, upon exposure to 67 

an antibacterial compound over a period of time, say about 90-99 % of the population are affected, while the 68 

remaining 1-10% remain unaltered due to the robustness in the system. For eg. the heterogenous expression of 69 

araBAD promoter in the presence of limited arabinose quantities in Mycobacterium tuberculosis shows variation 70 

in individuals of a population [9].  Additionally, as summarized in a recent review [10] it is a truism that in a 71 

population of bacterial cells, the gene expression levels are highly variable in lower nutrient concentrations.  72 

 73 

Traditional modelling assumes every bacterium to have equal exposure to the participating nutrients. Such a 74 

‘socialistic’ approach is often invalidated in a natural environment where intra-species competition persists 75 

leading to crony capitalism, among bacteria where nutrient availability is the ‘currency’ for driving a reliable 76 

binary of ‘haves’ and ‘have-nots’. In essence, the collection of cells in a group with the same genetic makeup 77 

(isogenic) have different expression profile. Hence, there is an urgent need to develop a population model where 78 

each cell has a unique metabolic signature.  79 

 80 

For understanding the optimal flux of pathways in a population, we can use a similar approach. Several 81 

industrially relevant metabolites are devoid of nitrogen. With glucose as the sole carbon source, the anabolism 82 

of nitrogen-containing metabolites such as nucleotides and amino acids, are further downstream compared to the 83 

C, H, O based metabolites.  Hence, it is easier to use the POSYBAL platform owing to the requirement of lesser 84 

dimension of matrices and hence lower computing power.  We describe the mathematical foundations of a 85 

population model extending the FBA architecture and validate its predictive power by constructing strains of E. 86 

coli with minimal genetic modifications that produce non-nitrogenous metabolites such as Isobutanol and 87 

Shikimate at multigram levels.  88 
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Isobutanol is produced by altering the pathway from the formation of branched-chain amino acids (BCAA), 89 

whereas shikimate is an intermediate metabolite of the aromatic amino acid pathway (AAA) respectively. 90 

Isobutanol is an important industrial solvent which has higher calorific value than ethanol making it an ideal fuel 91 

substitute. It requires no infrastructure modifications for transport, and unlike ethanol, it is not hygroscopic and 92 

is non-corrosive to motor engines. The generation of CO2 instead of SO2 or CO makes it a clean fuel compared 93 

to the fuels derived from petroleum. On the other hand, shikimate is a high-value industrial precursor for 94 

producing herbicide such as Glyphosate and the antiviral compound Tamiflu. [11,12].  95 

 96 

Both Isobutanol and shikimate are produced by designed alteration of the BCAA and AAA pathways 97 

respectively. Figure 2 illustrates the metabolic pathways required for their production. The unique feature of all 98 

the intermediates/metabolites that are formed from glucose to isobutanol and shikimate (Figure 2) is the absence 99 

of nitrogen in the metabolite composition. Hence, after producing the biomass in a rich media we generated the 100 

metabolite by using media containing either zero or limited amount of nitrogen. This was done to force the flux 101 

towards the production of isobutanol and shikimate. We term this shift of media as ‘Nitrogen Swap’ (N-swap) 102 

since it is literally the swapping of nitrogen to obtain more product yield. Of course, nitrogen is an essential 103 

element for cellular growth and is a part of proteins and DNA/RNA. Hence under nitrogen depleted condition, 104 

the growth of the cell is halted. However, since carbon, hydrogen and oxygen are present, the metabolite flux 105 

does proceed through Nitrogen independent pathway. 106 

Additionally, we use BL21 strain, a B-Strain of E. coli the strain has a valine-feedback independent acetolactate 107 

synthase (ilvG). This, in addition to the heterologously expressed ketoisovalerate decarboxylase (KivD), is 108 

better suited compared to the K12 (BW25113) strain for isobutanol production. Similarly, BL21 gave better 109 

Shikimate yield than BW25113, albeit for unknown reasons (Supplementary figure S1). 110 

 111 

An additional advantage of N-swap in case of Isobutanol production is that under anaerobic growth conditions 112 

nitrate formation inactivates the enzyme Dihydroxy-acid dehydratase (IlvD). Dinitrosyl iron complex bound 113 

IlvD is an inactive enzyme complex making the bacteria a BCAA auxotroph effectively halting isobutanol 114 

production. However, under limiting or no nitrogen in N-swap condition, the NO formation is effectively 115 

stunted, which helps in keeping the flux active through the BCAA pathway. This complex is activated under the 116 

aerobic condition without the formation of a new enzyme [13]. We demonstrate a scheme which considers the 117 

minimal amount of input with nominal gene manipulations necessary for the production of isobutanol and 118 

shikimate in the BL21 E. coli strain.  119 

  120 

  121 
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Methods and protocols 122 

Population system biology algorithm (POSYBAL): 123 

In a traditional FBA model, the metabolites and their reactions are represented in a matrix (S) of size a × b. 124 

Every metabolite is represented by a row and reactions are represented by every column. The balancing 125 

stoichiometric coefficients are entered into each column that enables computation of the compounds 126 

participating in a reaction. As most, if not all reactions are reversible, a negative coefficient shows a catabolic 127 

reaction and a positive coefficient portrays a metabolite anabolism whereas, the coefficient is entered as 0 when 128 

a metabolite does not participate in the reaction. Individually, most enzymes intrinsically, are reversible but the 129 

forward reaction is significantly higher than the reverse reaction. For our model, we have made the it 130 

unidirectional for computational convenience. Mostly the matrix is sparse as biochemical reactions involve only 131 

a few different metabolites.  In general, the number of compounds/metabolites is lesser compared to the number 132 

of reactions and hence more unknown variables are present than the number of equations. Consequently, making 133 

the system underdetermined, and allowing the existence of multiple solutions rather than a unique one (a>b). 134 

Constraining the reaction fluxes limits the range of the solutions for the model, which was manually curated to 135 

make them unidirectional based on literature survey. Figure 1D shows the reduction of solution space (red) 136 

where eventually an optimal solution (Orange) is obtained in traditional FBA by maximizing or minimizing the 137 

target reactions [14]. Instead, in POSYBAL platform, the samples are fetched from the entire constrained 138 

solution space randomly that encompasses the behaviour of an underdetermined system (population).  139 

 140 

At the systemic level each reaction is mediated by specific gene expression in the organism which is a 141 

dimension or variable. The flux of a reaction is the quantitative solution sought by ensuring the conservation of 142 

the mass at the systemic level. This essentially translates into a relationship between the reaction fluxes such 143 

that, sum of reaction fluxes that drive up metabolites is on the right-hand side and this equals the sum of the 144 

reaction fluxes in the left-hand side. We have used the standard convention that left hand side metabolites are 145 

substrates and the right-hand side are products and allowing for reversibility of the reactions in which case the 146 

fluxes are found to be negative. While the figure 1D shows three dimensions as an illustration, the number of 147 

dimensions of the system is equal to the number of reactions that have been considered to govern the system. In 148 

the context of using FBA in systems biology the solution most sought is either the maximization of biomass or 149 

the maximization of the target metabolite reaction. We can identify the essential genes and the pathways in the 150 

given system by maximizing the biomass reaction in contrast when the target metabolite reaction is maximized 151 

the biomass has a tendency to run minimum.  152 

 153 

We have created the shikimate model from IJO1366 [15] with the addition of a reaction corresponding to the 154 

export of the shikimate metabolite. In the absence of a transport flux the system considers the shikimate 155 

metabolite to be unused when reactions contributing to the utilization of the shikimate are knocked out, bringing 156 

down the shikimate flux to 0. This prevent us from arriving at knockouts that can maximize shikimate. In a 157 

different approach one need not optimize the system of linear equation for a given objective function but try and 158 

see the solution distribution over a very large set of solutions within some boundary.  This method tries to work 159 

around the optimization problem where it is inherently assumed that the system has some definitive but 160 

unknown intelligence to work towards (turn on genes expressions suitably) to attain maximization or 161 

minimization of the unique function. The modified approach that is computationally very intensive looks to 162 

setup a bounding set of minimal constraints so that all solutions that are possible to lie within a bound and then 163 

try and generate sample solutions from the entire solution space obtaining a matrix of multiple solutions 164 

(POSYBAL) using an algorithm based on Markov chain [16] and this data comprises of all the possible solution 165 

(ways) in which the organism can act (population behaviour) corresponding to a given condition. The 166 

POSYBAL data comprising of 100000 samples was developed (See supplementary methods 2 and 3 for detailed 167 

protocol, scripting and output information).  168 

 169 

Once the population results are obtained (i.e. multiple matrices), the system is filtered for the solutions with 170 

maximum production of the target metabolite.  The maximum flux is identified and all the iterations with ~90% 171 

and above of the maximum flux are filtered out. The next step is to identify the fluxes that run less than ~10% of 172 
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the maximum flux of respective reactions. These indicate knockouts for validating the platform in vitro.  A 173 

wrapper function using R programming [R development core team, 2010] is built to filter the possible knockouts 174 

from a population.  175 

 176 

Generation of predicted E. coli knockouts: 177 

 178 

Both the triple knockouts i.e. ΔackA:ΔadhE:ΔldhA and ΔaroA:ΔaroK:ΔaroL were generated using P1 179 

transduction method (See supplementary methods). ΔackA (BW strain) was used the donor and the BL21 strain 180 

was used as the recipient. Subsequently, ΔadhE and ΔldhA were used to knockout the respective genes in BL21. 181 

Similarly, BW ΔackA strain form in-house KIEO library of E. coli knockouts which have a kanamycin cassette 182 

in place of the knocked-out gene as a marker. After successful transduction, BL21 ΔackA strain is made with 183 

Kanamycin cassette replacing the knocked-out gene. This is confirmed by colony PCR. For shikimate 184 

production ΔaroA from KIEO collection was used as the recipient strain. To further knockout the genes, the 185 

kanamycin marker is first flipped out by using the λ-red recombinase method. pCP20 plasmid is first 186 

transformed into the desired knockout and plated on LB-amp (30ug/ml) plate and incubated overnight. The 187 

colonies are then grown in Luria broth until they reached 0.6 OD600. Then, the culture is incubated at 37oC for 188 

one hour followed by incubation of 43oC for four hours. It is then, plated on plain LB media, media containing 189 

ampicillin and media containing kanamycin respectively. Growth of the culture on LB plate and no growth on 190 

media having either ampicillin or kanamycin confirmed the absence of kanamycin cassette.  191 

 192 

Protocol for isobutanol and shikimate production with various knock-outs and media swap: 193 

 194 

Initially, the conformation of in-silico simulations for nitrogen modulation was done in shake flasks before 195 

proceeding towards biotransformation in bioreactors. The desired knockouts and wild-type strains are then 196 

transformed with pUC57a kivD plasmid and plated on Luria agar plates with ampicillin (100ug/ml). A single 197 

transformant is then inoculated in 5ml of LB media with ampicillin (100ug/ml) and grown overnight. The 198 

pUC57-kivD plasmid, synthesized by Genscript, is engineered without an operator site and with a constitutive 199 

promoter therefore making the induction step void.  For shikimate the cells (or knockouts) are grown overnight 200 

in LB media.  201 

  202 

Shake-flask bioconversion experiments: 203 

To conduct the shake-flask experiments for both shikimate and isobutanol growing the starter cultures in LB 204 

media, they are transferred to fresh Lysogeny broth and grown until 2.0 OD 600 (Secondary culture). Then the 205 

cells are centrifuged at 4000g and transferred into nitrogen deficient media. In case of Isobutanol, the knockouts 206 

are transferred to M9 media with varying percentage of Ammonium Sulphate (Nitrogen source) composition 207 

with 3.6% glucose (Carbon source) and ampicillin (100ug/ml) for sustaining the pUC57-kiVD plasmid.  For 208 

shikimate production, the cultures are transferred into M9 media with varying percentage of LB with 1.6% 209 

glucose.  210 

 211 

Protocol for bioreactor  212 

 213 

To get higher product yield the cells were grown in 500ml Bioreactor (Applikon miniBio). For producing 214 

isobutanol and shikimate the cells were grown up to ~ 6.0-6.5 OD600 in 20% dissolved oxygen (DO) at 200 rpm 215 

impeller speed. PEG400 was added as an anti-foaming agent. To create microaerophilic conditions the DO is 216 

reduced to 2.5% and impeller speed is reduced to 50 rpm to produce either isobutanol or shikimate. 217 
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 218 

Estimation of cell viability 219 

 220 

Cell viability was estimated by plating the spent culture in LB and LB with Ampicillin (100ug/ml) plates. This 221 

is done to give a projection of the number of cells alive and the plasmid loss after various time points. Samples 222 

are sent for GC analysis/HPLC performed with the corresponding media standards. We estimate isobutanol and 223 

ethanol produced along with the remaining glucose concentration, as well as other metabolites like formate, 224 

lactate, acetate, succinate and pyruvate. 225 

 226 

HPLC analysis 227 

 228 

For the detection of both Shikimate and Isobutanol,1ml of the culture was spun at 4000 g for 5 minutes, 229 

followed by further spinning of the supernatant at 14.8 g for 5 minutes. About 50ul of supernatant was analysed 230 

in HPLC. To perform the HPLC Aminex 87H column (Biorad) was used as stationary phase and 5mM H2SO4 231 

was used as the mobile phase at 0.750ml/min flowrate with RID detector which is useful for detecting 232 

monosaccharides and organic acids at the same time.  233 

  234 
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Results 235 

Looking at a metabolic map it is might be a non-controversial conjecture, for the carbon flux to proceed towards 236 

the production of higher isobutanol or shikimate, lesser amount of nitrogen input is required. In fact, figure 2 237 

shows the number of steps from glucose to the production of isobutanol (15 steps) and shikimate (12 steps) 238 

which don’t have nitrogen. Also, BL21 strain was used for the production of isobutanol due to valine-feedback 239 

independent acetolactate synthase (ilvG) but the product yield for shikimate was also higher using the same 240 

strain and its knockouts (Supplementary figure S1) for unknown reasons. Figure 3 shows the essential 241 

requirement of aromatic amino acids in order to maintain cell viability for shikimate production. Whereas, for 242 

isobutanol production this is not essential since there are no biochemical repercussions affecting cell viability. 243 

Hence, isobutanol production is an ideal candidate for testing the effect of limited nitrogen source on product 244 

yield. Figure 3 shows that the consumption of glucose remains same in both nitrogen and nitrogen depleted 245 

conditions however, the production of isobutanol is increased by almost 30% in media devoid of nitrogen (i.e. 246 

0% N). But this cannot be directly applied for increasing shikimate production as aromatic amino acid synthesis 247 

is downstream to shikimate unlike valine.  248 

The POSYBAL platform was used to identify the knockouts required for increasing the shikimate/isobutanol 249 

yield. Knockouts were derived by observing the flux through metabolite pathways. A negligible flux essentially 250 

represents a knockout. Hence, as depicted in figure 1C a matrix of multiple solutions was used for finding the 251 

best fluxes for isobutanol and shikimate production. A set of 105 iterations (Figure 4A) was used for simulating 252 

isobutanol and 104 iterations (Figure 4B) were used for simulating shikimate production. Each dot represents 253 

one solution among the solution space. The optimal knockouts (encircled in Figure 4) for increased biomass 254 

against product yield for isobutanol is ΔackA:ΔldhA:ΔadhE triple knockout and shikimate yield is 255 

ΔaroA:ΔaroK:ΔaroL knockout. Further, to prove the significance of POSYBAL platform, about 104 iterations 256 

were done for ΔackA, ΔldhA, ΔadhE in various combinations. This produces a scatter plot of bacterial 257 

population producing isobutanol. These ‘knockouts’ are produced by introducing negligible flux through the 258 

respective genes. Figure 5A shows the progression of population towards the ‘peak’ of the population 259 

distribution as the flux reduces from Wildtype (BW25113) to single, double and eventually triple knockout of 260 

ΔackA, ΔldhA, ΔadhE. Hence, it is easier to understand a population behaviour using this platform unlike ODE 261 

and FBA simulations. Figure 5B shows the normalized HPLC data for the wild type (BL21) and 262 

ΔackA:ΔldhA:ΔadhE triple knockout. There is an increased production of isobutanol in nitrogen depleted 263 

conditions especially at 3% nitrogen and a decreased production of acetate and no production of lactate in the 264 

triple knockout.  265 

For shikimate production the minimal requirements are indirect as the aromatic amino acid (essential) 266 

production is downstream. It is observed that despite intuitively choosing ackA based on Figure 2 as a knockout 267 

for producing more shikimate, the in vitro output proves otherwise (Figure 6B). POSYBAL simulations were 268 

performed for some of the knockouts derived from Figure4B. The individual scatter plots (Figure 6A) show 269 

inverse triangle relationship for aroL, pykA/F and ptsG. Hence, in these cases knockouts are important for 270 

increasing product yield. Whereas, gaussian plots are seen for ackA and partially for poxB. The scatter plots for 271 

knockouts which showed higher shikimate production. The shake flask experiments were performed with the 272 

previously predicted ΔaroK:ΔaroA:ΔaroL  knockout along with ΔpoxB:ΔaroK:ΔaroA:ΔaroL and 273 

ΔptsG:ΔaroK:ΔaroA:ΔaroL quintuple knockouts (Figure 6B). The experiments were done with various nitrogen 274 

source (LB) concentrations of which the 20% LB (LB/5) was found to be the optimal concentration for 275 

maximum product yield. It is also seen that there is negligible flux of glucose without the nitrogen source. This 276 

shows that a certain amount of nitrogen is required for driving the carbon flux towards shikimate production.  277 

Figure 6B also shows the limited acetate required for higher shikimate yield in ΔaroK:ΔaroA:ΔaroL. The 278 

addition of poxB and ptsG knockouts reduce the acetate production by 68% (see supplementary table 2). This in 279 

turn increases the shikimate production in 20% LB (Figure 6B). Although the quadruple knockouts show that 280 

POSYBAL simulations help in understanding the population behaviour and flux of carbon, we sought the best 281 

triple knockouts which gave higher shikimate yield with enzymes such as tkaA and pntAB which showed direct 282 

correlation with shikimate production. These enzymes were taken from the ASKA collection and expressed in 283 

BL21 ΔaroK:ΔaroA:ΔaroL knockouts. The experiment was performed in bioreactor with 20% LB with 08 and 284 

1.6% glucose. The production of shikimate after 24 hours in ΔaroK:ΔaroA:ΔaroL was 1634 ppm which was 285 

doubled by tktA overexpression to 3022 ppm and whereas, pntAB overexpression gave initial higher yields i.e. 286 

1130 ppm (at 12 hours) but they remained in similar concentration (1245 ppm) after 24 hours as well (Figure 287 

7A). For isobutanol production a fairly straightforward correlation was observed in 3% nitrogen containing 288 
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complete minimal M9 media where the isobutanol concentration produced was 2235 ppm after 24 hours (Figure 289 

7B). 290 

 291 

Discussion 292 

 293 

Traditionally, the production of butanol was done by ABE (Acetone, n-butanol and Ethanol) fermentation 294 

method.  The carbon source used during this anaerobic fermentation procedure was starch with Clostridium 295 

acetobutylicum (or C. beijerinkii) as a whole-cell catalyst [17.]. The solvents were produced in a ratio of 3 parts 296 

Acetone, 6 parts Butanol and 1-part Ethanol. In the post genomic era, the use of systems biology and 297 

heterologous gene expression have ushered a revival in “bio-butanol”.  Atsumi et al. [18] showed that the 298 

integration of the Ehrlich pathway into the branched chain amino acid pathway was sufficient to generate 299 

isobutanol in E. coli under non-fermentative conditions. Also, the addition of the heterologous gene kivD 300 

(ketoisovalerate decarboxylase) from L. lactis was required to produce isobutanal which is converted to 301 

isobutanol by multiple native isobutyraldehyde dehydrogenases such as YqhD, AdhP, FucO, EutG, YaiY, BetA, 302 

EutE and YjbB [19] (Figure 2). Historically, Shikimate is produced by using plant sources, since they contain 303 

similar biosynthetic pathways. Star anise (Illicium anisatum) is used for extracting shikimate (1.5% w/v) [20]. A 304 

better substitute is sweetgum (Liquidambar styraciflua) which has a product yield of 2.4-3.7% w/v [21]. 305 

Engineering microorganisms is imperative for higher yields or easier extraction processes. In E. coli It is 306 

obtained by knocking out genes further downstream which produce aromatic amino acids such as aroK, aroL 307 

[22].   308 

 309 

However, static biochemical maps often don’t portray the nuances of complex dynamic systems such as a cell. 310 

Even, traditional FBA or ODE models would give a single solution which may or may not work in vitro. 311 

However, POSYBAL simulations are different from traditional FBA models as they consider the overall 312 

‘presence’ of a metabolite ‘through’ a population of cells. Hence, multiple combinations entail this concept and 313 

result in a normal distribution of substrate vs metabolite. Although, this stochastic combination requires 314 

intensive computational power, it is useful for determining combinations which may not be always ‘intuitive’. 315 

The platform shows different phenotypes of a single strain in its population. Notice, that the ‘cells’ in the scatter 316 

plot (Randomly picked points from the solution space) portrays a specific behaviour of a particular phenotype’s 317 

reaction flux and its corresponding effect on the target metabolite of interest. In general, three types of patterns 318 

are observed namely, inverse triangle correlation where a knockout may result in the production of a target 319 

metabolite. A direct triangle shows that a gene overexpression is required for metabolite production. A random 320 

scatter means there is no correlation involved.  In the current study we demonstrate this with two examples, the 321 

production of isobutanol is straightforward since, valine biosynthesis can continue with limited nitrogen and the 322 

carbon flux can be diverted towards the production of acetolactate (and subsequently isobutanol) through 323 

microaerophilic conditions.  However, in case of shikimate this approach fails as a stoichiometric deficit is 324 

observed. An example of this is demonstrated here for the role of ackA in shikimate synthesis. One may assume 325 

that knocking out acetate production (ackA) in Figure 2 would divert the flux towards shikimate production. 326 

However, this is counter-productive as seen in figure 9.   327 

 328 

Intuitively it can be assumed that knocking out acetate production (ackA) in Figure 2 would divert the carbon 329 

flux towards shikimate production. However, this is counterintuitive as seen in Figure 9A. With FBA models a 330 

stoichiometric assumption can be made since 2 molecules of glucose (C6H12O6) are needed to produce one 331 

molecule of shikimate (C7H10O5). But, the atomic excess of C5H14O7 has to be converted or excreted in other 332 

metabolic forms else, the reaction would reverse in order to maintain the cell viability. With the POSYBAL 333 

platform it is feasible to find out if a knockout, knockdown or overexpression is required for optimal production 334 

of shikimate (or any other metabolite). It is observed that despite intuitively choosing ackA as a knockout for 335 

producing more shikimate, but the in vitro output shows otherwise. Through POSYBAL platform it is seen that 336 

poxB, pykA/F and aroL can be knocked out to produce high amount of shikimate whereas an ‘intermediate’ flux 337 

through ackA and ptsG (Figure 9A) produces higher shikimate than its knockout. Figure 9B shows that limited 338 

amount of acetate (ackA expression) is required for the production of Shikimate. When it comes to glucose 339 
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media the acetate is upstream in production and subsequently lactate is also increased.  But in case of LB media 340 

the input is predominantly consists of nitrogen sources and hence the carbon 'system' in turn is downstream. The 341 

enzymatic journey taken for production of acetate is lesser in case of glucose medium than LB media. Along 342 

with this principle, it is important to consider the limiting effects of nitrogen for production of non-nitrogenous 343 

metabolites. This, along with an understanding of the anaerobic E. coli biochemistry, helps us in devising a 344 

strategy of N-swap coupled with partial aerobic flow through the fermentation process to maximize 345 

isobutanol/shikimate production. It is also important to note that the POSYBAL simulations were done with 346 

BW2511 strain where as with the exception of initial experimentation, the BL21 strain was used for producing 347 

shikimate and isobutanol. However, these strains have near identical genes and pathways and hence, the 348 

simulations stick to the in vitro repertoire.  349 

 350 

The results from the insilico simulations were tested in the lab by creating a triple knockout 351 

ΔackA:ΔadhE:ΔldhA using p1 transduction method. Additionally, ketoisovalerate decarboxylase (kivD) was 352 

introduced to convert ortho-isovalerate to isobutanal. Minimal media was utilized to convert glucose (carbon 353 

source) to isobutanol in shake flasks. Initial experiments showed higher titre of Isobutanol yield in media devoid 354 

of Nitrogen (Figure 4). Whereas, in Shikimate, ΔaroA:ΔaroK:ΔaroL knockouts fail to survive as an external 355 

source of aromatic amino acids is required for continued survival of the cells.  356 

 357 

The validation of computer predictions showed an increased flux of isobutanol away from ethanol production as 358 

seen in Figure 7 and 8. All the bioconversions and knockouts were done in BL21 strain. The overall yield of 359 

shikimate increased from ~50 to 100 ppm in BL21 strain compared to the BW25113 (See supplementary figure 360 

S2) also, aroK and aroL knockouts of BW and BL21 showed the same ‘signature’ of higher yield and BL21 was 361 

used to make ΔaroA:ΔaroK:ΔaroL triple Knockout.  The optimal biomass to isobutanol reduction ratio is 362 

observed in 3% nitrogen in minimal media. Similarly, higher yield of shikimate was seen in the predicted 363 

ΔaroA:ΔaroK:ΔaroL triple knockout compared to the double knockout (ΔaroK:ΔaroL) and wild type (Figure 9).  364 

 365 

Based on the threshold parameters as mentioned and selected earlier by POSYBAL simulations, it was found 366 

that the triple knockout of ΔadhE:ΔackA:ΔldhA triple knockout corresponds to 2770 solutions of the 100000 367 

(Figure 5a) solutions obtained, which is basically 2.7% of the solution set. Similarly, for shikimate 300 solutions 368 

were obtained of which five solutions (Figure 5b) were seen as optimal (16%). We see that there is no central 369 

governing systemic intelligence to a collection of the reaction set that has a small section (probability) wherein 370 

the system produces the metabolite of interest (in this case isobutanol) and this probability increases when the 371 

stem is reengineered (in case of shikimate) wherein certain gene expressions are blocked (knocked out) . A filter 372 

to locate solutions that have reduced flux through specific reactions below a threshold finally points to an 373 

optimal knockout. 374 

  375 
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Conclusion 376 

The in-silico platform for various species of bacteria like E. coli, M. tuberculosis, P. aeruginosa, C. 377 

acetobutylicum have been described previously. They are either based on the non-linearity of interconnected 378 

ordinary differential equations (ODE) that represent various enzymes which describe the cellular interactions 379 

with its intrinsic kinetic parameters or in a Flux based mode where stoichiometry of each metabolite is linearly 380 

connected to another of the ensemble. Both these in silico modes essentially describes the functionality of a 381 

single cell and assumes homogeneity of behaviour in a population of an isogenic bacteria. In reality, a 382 

population of bacteria is not only asynchronous in its physiological state, no two cells in a population are in 383 

metabolic congruence. In conventional FBA the optimal solutions derived out of maximization/minimization of 384 

a particular reaction gives an understanding of the system required to achieve a theoretical maximum/minimum 385 

in a utopian environment. A living cell can be visualized as an ensemble of underdetermined equations that 386 

connects metabolites which produces an infinite array of possible solutions. Each cell in the population may use 387 

one set of these solutions. This tacitly entails that no two cells have identical expression levels in a given 388 

environment. These varying behavioural signatures enables the system to be robust enough to handle stress 389 

factors such as nutritional deficiency, osmotic imbalance, temperature shock or presence of antibiotics. These 390 

kind of competitive growth “advantage-disadvantage” simulation can be generated in our POSYBAL population 391 

model. It is seen that even in media with optimum nutrient availability cells diverge in their growth rate and 392 

rapidly move away from being synchronous. This divergence that is seen experimentally and is a natural 393 

outcome of our POSYBAL platform. It is also seen that this divergence of synchronicity is dependent on the 394 

flux through some key non-essential pathways wherein specific knockouts produce altered divergence.  395 

  396 
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Figures 

Figure 1: Depiction of ODE, FBA and POSYBAL models. A. The ODE model takes in the kinetic parameters 
and gives solutions based on those parameters. The solution is singular (green) however, gene lethality can also 
be found (red) for a given knockout. B. The FBA model uses stoichiometric constraints and gives a single 
optimal solution for the entire population. The essentiality/lethality is often found through literature or 
experimental evidence. C.  The POSYBAL model may not predict essentiality but it considers multiple 
solutions for each stochiometric constraint and gives multiple combination of flux the best knockouts are chosen 
through the population. D. Concept behind constraint-based modelling where a solution space is limited given 
the ‘dimensions’ such as stochiometric flux, metabolite produced and biomass 

 

 

 

Figure 2: Pathway for Isobutanol and Shikimate production. The genes coloured blue is native to E. coli whereas 
the genes labelled in red are heterologously expressed and metabolites in green are products of interest. 
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Figure 3: Graphical representation of initial shake flask experiment with the BL21 ΔadhE:ΔackAΔldhA with 
heterologous expression of KivD in media with and without nitrogen source.  

  

 

Figure 4: The figure represents the scatter plot of the population distribution for normalized 
isobutanol/shikimate production vs biomass A. Scatter plot of the population distribution for isobutanol 
production vs biomass comprising the triple knockouts adhE, ackA and ldhE with the threshold considered 
(encircled). B. Scatter plot for shikimate production comprising of the triple knockout aroK, aroA and aroL 
which are one of the solutions (encircled) in the plot. 
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Figure 5: POSYBAL simulations for isobutanol production with the predicted knockouts. A. The population of 
bacterial cells producing isobutanol increases as flux decreases across adhE, ackA and ldhA genes. B. Graph 
depicting the normalized HPLC peaks for understanding the flux of Ethanol, acetate, lactate and Isobutanol in 
Wild type BL21 and ΔackA:ΔadhE:ΔldhA triple knockout expressing KivD. There is considerable reduction of 
flux towards acetate, lactate and acetate production compared to Isobutanol.  
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Figure 6: POSYBAL simulation for minimal requirements necessary in shikimate production. A: Scatter plot 
representing fluxes through each gene and the corresponding shikimate produced. It is observed that despite 
intuitively choosing ackA as a knockout for producing more shikimate, but the in vitro output proved otherwise. 
Through POSYBAL platform it is observed that poxB, pykA/F and aroL can be knocked out to produce high 
amount of shikimate whereas an ‘intermediate’ flux through ackA and ptsG produces higher shikimate than its 
knockout. B: Normalized invitro graphs show that acetate production is required for the flux to move towards 
shikimate production. Also, glucose cannot be consumed when a nitrogen source (LB) isn't available. 
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Figure 7: A. Production of Shikimate (mg/L or PPM) in BL21, ΔaroK:ΔaroL, ΔaroA:ΔaroK:ΔaroL, 
ΔaroA:ΔaroK:ΔaroL with pntAB and tktA overexpression in LB/5 or 20% LB (nitrogen source) in bioreactor. 
B. Production of Isobutanol in 0% and 3% nitrogen after 24 hours in pilot scale fermenter. 

\ 
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